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Abstract. We consider a modified version of the one-dimensional Hubbard model, the t1−t2 Hubbard chain,
which includes an additional next-nearest-neighbor hopping. It has been shown that at weak coupling this
model has a Luttinger liquid phase or a spin liquid phase depending upon the ratio of t2 to t1. Additionally
if the on-site interaction U is large enough, the ground state is fully polarized. Using exact diagonalization
and the density-matrix renormalization group, we show that the transition to the ferromagnetic phase is
either of first or second order depending on whether the Luttinger liquid or spin liquid is being destabilized.
Since we work at T = 0, the second order transition is a quantum magnetic critical point.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 75.40.Mg Numerical simulation studies
– 05.70.Jk Critical point phenomena

1 Introduction

There has been interest in the theory of zero temperature
ferromagnetic transitions for a few years now [1]. In such
transitions, it is the quantum fluctuations, rather than
the thermal fluctuations, that govern the critical point.
A theory for the onset of ferromagnetism in an unpolar-
ized itinerant system (Fermi liquid) for dimension d > 1
was proposed by Hertz [2] who showed that the critical
behavior should be mean field like. Precisely for d = 1,
there is no theory for this transition, and it should be in
the same universality class as the onset of ferromagnetism
in a Luttinger liquid of itinerant electrons [3]. The criti-
cal theory of this transition is the main remaining open
problem in the theory of phase transitions in quantum
ferromagnetism [3].

In this work, we will present a one-dimensional itin-
erant model which has a ferromagnetic quantum criti-
cal point. We study a modified version of the Hubbard
model by including a next-nearest-neighbor hopping in
addition to the nearest one. The model is no longer inte-
grable, and to investigate it we used exact diagonalization
and the powerful density matrix renormalization group
(DMRG) [4]. This model has previously been shown to
have a paramagnetic to ferromagnetic transition as the
on-site interaction U is increased [5]. Here, we show that
the order of the transition is either of first or second order
depending on the parameters of the model. We will then
focus on the second order transition.
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Fig. 1. The t1 − t2 Hubbard chain.

2 Model

We consider the t1 − t2 Hubbard chain (see Fig. 1) given
by the Hamiltonian

H = −t1
∑
i,σ

(
c†i+1σciσ + h.c.

)
− t2

∑
i,σ

(
c†i+2σciσ + h.c.

)
+ U

∑
i

ni↑ni↓. (1)

The summation is over all L sites and spin σ, and we will
always take U positive. The sign of t1 is arbitrary since a
local gauge transformation, cj → eiπjcj , maps the Hamil-
tonian with t1 negative onto the t1 positive Hamiltonian.
Therefore we set t1 = 1 without loss of generality, and
measure all energies in units of t1. This Hamiltonian con-
serves the number of particles N , the total spin S and its
projection onto the quantization axis, Sz. If a particle-hole
transformation is applied to the system, the transforma-
tion t2 → −t2 is necessary to recover the original Hamil-
tonian. We restrict ourselves to 0 < N < L and t2 < 0,
since it is in this region that a fully polarized ground state
(with spin S = N

2 ) has been found when U is large enough
over a vast region of parameters [5]. We define Uc as the
value of U above which the ground state is fully polarized.
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Fig. 2. The non-interacting phase diagram. The dotted line
indicates the boundary between the systems with two and four
Fermi points.

The weak-coupling phase diagram has two different re-
gions which can be understood by looking at the U = 0
phase diagram shown in Figure 2. For not too large |t2|,
the single-particle spectrum does not change much from
that of the pure Hubbard. The Fermi surface has 2 points
and we expect the model to be a Luttinger liquid [6]
away half-filling. When t2 < tcrit

2 , the Fermi surface has
4 points, and a weak-coupling treatment predicts that
the system should be a spin liquid (no charge gap but
a spin gap) [7]. These two phases have been confirmed
with DMRG calculations for U < Uc [5].

3 Order of the transition

If the system is a Luttinger liquid, it has gapless spin ex-
citations with velocity vσ. When it approaches the ferro-
magnetic transition by increasing U , the velocity vσ might
smoothly go to zero leading to a second order transition.
On the other hand, when the system has a spin gap, the
transition must be of first order. To see this, following
reference [2], a Hubbard-Stratanovitch transformation is
performed on the interacting term of the Hamiltonian (1).
The introduced field m(q, ω) can be seen as the order pa-
rameter, and the action of the system is developed in a
power series of m as

S[m] = S0 +
∫

dq dω
[
u2(q, ω)m2(q, ω) + u4m

4 + . . .
]
(2)

where S0 is the non-interacting action, and un is the vertex
of order n. The quadratic term of the effective action is

u2(q, ω) = 1− Uχ(q, ω) (3)

with χ(q, ω) the spin susceptibility. Since

lim
q→0

lim
ω→0

χ(q, ω) = 0 (4)

for a spin-gapped system then

S[m] = S0 +
∫

dq dω m2(q, ω)
[
1 +O(q2, ω2)

]
. (5)

Since the coefficient of m2 does not depend on U , the
transition must be of first order.

Numerically we can study the order of the phase transi-
tion by calculating the ground-state energy E0(U) around
Uc with very high precision. Since there are many states
with energy very close to E0, a large number of iterations
are needed in the Davidson procedure used in exact di-
agonalization in order to obtain convergence (more than
1 000 H|ψ〉 multiplications). If the transition is first order,
the ground state will jump from S = 0 to S = Smax, and
E0(U) will have a kink at Uc, since the fully polarized state
has no U dependence. On the other hand, if the transition
is second order, the energy and spin will smoothly take
on all values from 0 to Smax as a function of U . In the
thermodynamic limit, a second order transition requires
that

lim
U→U−c

∂E0

∂U
= lim
U→U+

c

∂E0

∂U
, (6)

i.e., the derivative of the ground-state energy is contin-
uous through the transition, while it is discontinuous for
a first order transition. In order to clarify this issue, we
follow the lowest energy state with a particular spin S.
However utilizing the S2 quantum number in exact diago-
nalization is technically difficult, and so we follow a state
of a particular S by diagonalizing the augmented Hamil-
tonian

H ′ = H + λS2 (7)

in different Sz-subspaces with λ > 0. For large enough λ,
the lowest energy state within a given Sz sector will have
the minimum S value [5].

Results obtained with the Davidson algorithm [8] for
two different cases are shown in Figure 3. In Figure 3a, for
t2 = −0.2, L = 12 and N = 6, when the non-interacting
Fermi surface has two points, we clearly see that the spin
S of the ground state takes on all intermediate values as
U is increased. This is an indication that equation (6)
will be satisfied in the thermodynamic limit and that the
transition is continuous. On the other hand, in Figure 3b
we see that the transition for a system with t2 = −0.8,
L = 16 and N = 8, which is in the spin liquid phase at
weak U , is from the S = 0 state to the fully polarized one
with S = 4, indicating a first order transition.

Another way of determining the order of the transition
is to study the first derivative of the ground-state energy
with respect to U directly. For the t1− t2 Hubbard chain,
this is simply the double occupancy

∂E0

∂U
=
∑
i

〈ni↑ni↑〉 = D. (8)
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Fig. 3. Ground-state energy as a function of U for different S-
subspaces. (a) The system has L = 12, N = 6 and t2 = −0.2.
(b) The system has L = 14, N = 8 and t2 = −0.8. Note that
the solid horizontal line is the ground-state energy of the fully
polarized state and does not depend on U . The state S = 3 is
not shown in (b) because it is higher in energy.

Here we perform DMRG calculations keeping up to 800
states on lattices of up to 80 sites so that the maximum
weight of the discarded density matrix eigenvalues is 10−6.
Figure 4 shows the results as a function of renormalized
U . We see that for t2 = −0.2 (full circles) the transition
is continuous whereas when t2 = −0.8 (open squares), it
seems discontinuous. It is certainly the mixing of energet-
ically close states near the transition which makes it seem
smooth.

4 Critical exponents

We will now focus on the second order transition. Here
the relevant scaling field is not the temperature but the
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Fig. 4. Double occupancy D as a function of renormalized U
for two systems with L = 40 and N = 20. The value of Uc is
determined as in reference [4].

interaction

g = |U − Uc|. (9)

The order parameter m = 〈Sz〉 is coupled to the external
field h. In addition to classical exponents one has to
introduce a dynamical exponent z. The homogeneity hy-
pothesis for the energy and the correlation function are [9]

E(bg, bβm) = b2−αE(g,m) (10)

and

Γ (b−1/νg, b−yh, br, bzτ) = b2−(d+z+η)Γ (g, h, r, τ) (11)

with d the dimension, here d = 1. This leads to the well-
known definition of all critical exponents and to the fol-
lowing identities

α+ 2β + γ = 2 (12)
γ = ν(2− η) (13)

α+ β(δ + 1) = 2 (14)
(d+ z)ν = 2− α. (15)

with y related to δ by y = (d+ z)δ/(1 + δ).
In addition, there is an identity derived by

Sachdev [10]. Since the correlation function

G(r, τ) = 〈Sz(r, τ)Sz(0, 0)〉 (16)

scales like

G(br, bzτ) = b2−(d+z+η)G(r, τ), (17)

the scaling dimension µ of Sz is

µ =
d− 2 + z + η

2
· (18)
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Fig. 5. The spin susceptibility for L = 60, t2 = −0.2 and
n = 0.5 as a function of U . The inset shows the points on a
log-log scale fitted by the form equation (20) with γ = 1.9.

However since Sz is a conserved charge density (it com-
mutes with H), below the upper critical dimension its scal-
ing dimension must be precisely d. Therefore, µ = d which
leads to the identity

z = d+ 2− η. (19)

Thus for d = 1, one finds that ν = β and z = 1 + γ
β .

The critical exponent γ defined by

χ ∼ g−γ (20)

can be obtained in two different ways. The first is by tak-
ing advantage of the fact that the system is a Luttinger
liquid, for which the spin susceptibility is inversely pro-
portional to the spin velocity. This leads for t2 = −0.2
and n = 0.5 to a critical exponent of γ = 2.0 ± 0.1 [5].
Another way is by adding to the Hamiltonian an external
field h coupled to Sz

H ′ = H + hSz, (21)

where the susceptibility is then given by

χ = lim
h→0

∂〈Sz〉
∂h

· (22)

The results for the same parameters as mentioned before
are shown in Figure 5. The critical exponent obtained by
a least-square fit is γ = 1.9 ± 0.1 where the error comes
from the fit.

Another critical exponent can be obtained, namely α.
Normally this exponent is defined by the divergence of the
heat capacity. Since we deal with a quantum critical point
this critical exponent is defined by

∆E(U) = Eferro −E0(U) ∼ gα′ (23)

with α′ = 2−α. Figure 6 shows the results for L = 40, t2 =
−0.15 and n = 0.6. A mean square fit yields α′ = 2.33±
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Fig. 6. The ground-state energy as a function of U for L = 40,
t2 = −0.15 and n = 0.6. The dashed line is the energy of the
fully polarized state. The inset shows the points on a log-log
scale fitted by the form in equation (23) with α′ = 2.33.

Table 1. Critical exponents for three different set of parame-
ters. The errors are from the least-square fit. The critical ex-
ponents β and z are calculated using the identities between
exponents.

t2 n Uc α′ γ β z

−0.1 0.4 15.1 1.34 ± 0.23 1.15 ± 0.16 0.1 12.5

−0.2 0.5 7.54 1.87 ± 0.03 1.83 ± 0.2 0.08 24

−0.15 0.6 16.3 2.33 ± 0.05 2.17 ± 0.06 0.02 100

0.05, where the error comes from the fit. A calculation for
L = 80 yields the same exponent.

Since these two exponents (α′ and γ) only involve the
evaluation of ground-state energies, they can be obtained
with sufficient precision. From the identity between expo-
nents, we get a small ν which is consistent with previous
calculation of correlation functions [5]. Table 1 shows the
critical exponents obtained for three different sets of pa-
rameters. We clearly see that they are not universal, and
that β is small while z is large. This certainly is the sign
of a crossover with the nearby first order transition (for
which β = 0), due to finite size effects. The fact that the
first set of parameters, t2 = 0.1 and n = 0.4, which are the
farthest from the first order transition, gives the largest β
goes also in the direction of a crossover.

5 Conclusion

In conclusion, the t1 − t2 Hubbard chain, with negative
t2 and filling less than one half, shows a transition from
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a spin liquid or a Luttinger liquid to a ferromagnet, de-
pending on the ratio t2/t1. This transition is of first order
when we increase U from the spin liquid regime and sec-
ond order when we increase U from the Luttinger liquid.
This second order transition is characterized by a quan-
tum critical point for which we can extract exponents.
However the systems considered are relatively small and
we see a crossover with the first order transition due to
finite size effects. More work has to be done by looking
at even larger systems and also by trying to extract the
dynamical exponent z directly.
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